Homotopy Bisimilarity for Higher-Dimensional Automata

نویسندگان

  • Ulrich Fahrenberg
  • Axel Legay
چکیده

We introduce a new category of higher-dimensional automata in which the morphisms are functional homotopy simulations, i.e. functional simulations up to concurrency of independent events. For this, we use unfoldings of higher-dimensional automata into higher-dimensional trees. Using a notion of open maps in this category, we define homotopy bisimilarity. We show that homotopy bisimilarity is equivalent to a straightforward generalization of standard bisimilarity to higher dimensions, and that it is finer than split bisimilarity and incomparable with history-preserving bisimilarity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

History-Preserving Bisimilarity for Higher-Dimensional Automata via Open Maps

We show that history-preserving bisimilarity for higher-dimensional automata has a simple characterization directly in terms of higher-dimensional transitions. This implies that it is decidable for finite higher-dimensional automata. To arrive at our characterization, we apply the open-maps framework of Joyal, Nielsen and Winskel in the category of unfoldings of precubical sets.

متن کامل

Partial Higher-dimensional Automata

We propose a generalization of higher-dimensional automata, partial HDA. Unlike HDA, and also extending event structures and Petri nets, partial HDA can model phenomena such as priorities or the disabling of an event by another event. Using open maps and unfoldings, we introduce a natural notion of (higher-dimensional) bisimilarity for partial HDA and relate it to history-preserving bisimilarit...

متن کامل

A Category of Higher-Dimensional Automata

We show how parallel composition of higher-dimensional automata (HDA) can be expressed categorically in the spirit of Winskel & Nielsen. Employing the notion of computation path introduced by van Glabbeek, we define a new notion of bisimulation of HDA using open maps. We derive a connection between computation paths and carrier sequences of dipaths and show that bisimilarity of HDA can be decid...

متن کامل

Modeling Concurrency with Geometry bY

The phenomena of branching time and true or noninterleaving concurrency find their respective homes in automata and schedules. But these two models of computation are formally equivalent via Birkhoff duality, an equivalence we expound on here in tutorial detail. So why should these phenomena prefer one over the other? We identify dimension as the culprit: l-dimensional automata are skeletons pe...

متن کامل

Hereditary History-Preserving Bisimilarity: Logics and Automata

We study hereditary history-preserving (hhp-) bisimilarity, a canonical behavioural equivalence in the true concurrent spectrum, by means of logics and automata. We first show that hhp-bisimilarity on prime event structures can be characterised in terms of a simple logic whose formulae just observe events in computations and check their executability. The logic suggests a characterisation of hh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1409.5865  شماره 

صفحات  -

تاریخ انتشار 2014